Kubernetes笔记(7)—— 搭建”k8s on Mesos”注意事项

在本地搭建k8s on Mesos项目时,Mesos client脚本要以root身份运行。另外如果本地环境用到了proxy,一定要注意可能(不确定是否有例外,比如也许取决于你所使用的proxy或操作系统)需要把k8s或者MesosIP地址加入到no-proxy/NO_PROXY环境变量中。具体可参见下列issues
The kubernetes on Mesos can’t run successfully on the same machine
Why does “km controller-manager” think it is an invalid event?
The “km controller-manager” command doesn’t work successfully behind proxy.


Kubernetes笔记(6)—— kubectl代码分析(1)


func Run() error {
    cmd := cmd.NewKubectlCommand(cmdutil.NewFactory(nil), os.Stdin, os.Stdout, os.Stderr)
    return cmd.Execute()


// NewKubectlCommand creates the `kubectl` command and its nested children.
func NewKubectlCommand(f *cmdutil.Factory, in io.Reader, out, err io.Writer) *cobra.Command {
    // Parent command to which all subcommands are added.
    cmds := &cobra.Command{
        Use:   "kubectl",
        Short: "kubectl controls the Kubernetes cluster manager",
        Long: `kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/kubernetes/kubernetes.`,
        Run: runHelp,
        BashCompletionFunction: bash_completion_func,


    // From this point and forward we get warnings on flags that contain "_" separators

    cmds.AddCommand(NewCmdGet(f, out))
    cmds.AddCommand(NewCmdDescribe(f, out))
    cmds.AddCommand(NewCmdCreate(f, out))
    return &cmds

所以cmd := cmd.NewKubectlCommand(cmdutil.NewFactory(nil), os.Stdin, os.Stdout, os.Stderr)得到的cmd是一个指向cobra.Command的指针。


// NewFactory creates a factory with the default Kubernetes resources defined
// if optionalClientConfig is nil, then flags will be bound to a new clientcmd.ClientConfig.
// if optionalClientConfig is not nil, then this factory will make use of it.
func NewFactory(optionalClientConfig clientcmd.ClientConfig) *Factory {
    mapper := kubectl.ShortcutExpander{RESTMapper: api.RESTMapper}

    flags := pflag.NewFlagSet("", pflag.ContinueOnError)
    flags.SetNormalizeFunc(util.WarnWordSepNormalizeFunc) // Warn for "_" flags

    generators := map[string]kubectl.Generator{
        "run/v1":                          kubectl.BasicReplicationController{},
        "run-pod/v1":                      kubectl.BasicPod{},
        "service/v1":                      kubectl.ServiceGeneratorV1{},
        "service/v2":                      kubectl.ServiceGeneratorV2{},
        "horizontalpodautoscaler/v1beta1": kubectl.HorizontalPodAutoscalerV1Beta1{},
        "deployment/v1beta1":              kubectl.DeploymentV1Beta1{},
        "job/v1beta1":                     kubectl.JobV1Beta1{},

    clientConfig := optionalClientConfig
    if optionalClientConfig == nil {
        clientConfig = DefaultClientConfig(flags)

    clients := NewClientCache(clientConfig)

    return &Factory{



// ClientConfig is used to make it easy to get an api server client
type ClientConfig interface {
    // RawConfig returns the merged result of all overrides
    RawConfig() (clientcmdapi.Config, error)
    // ClientConfig returns a complete client config
    ClientConfig() (*client.Config, error)
    // Namespace returns the namespace resulting from the merged
    // result of all overrides and a boolean indicating if it was
    // overridden
    Namespace() (string, bool, error)


func DefaultClientConfig(flags *pflag.FlagSet) clientcmd.ClientConfig {
    loadingRules := clientcmd.NewDefaultClientConfigLoadingRules()
    flags.StringVar(&loadingRules.ExplicitPath, "kubeconfig", "", "Path to the kubeconfig file to use for CLI requests.")

    overrides := &clientcmd.ConfigOverrides{}
    flagNames := clientcmd.RecommendedConfigOverrideFlags("")
    // short flagnames are disabled by default.  These are here for compatibility with existing scripts
    flagNames.ClusterOverrideFlags.APIServer.ShortName = "s"

    clientcmd.BindOverrideFlags(overrides, flags, flagNames)
    clientConfig := clientcmd.NewInteractiveDeferredLoadingClientConfig(loadingRules, overrides, os.Stdin)

    return clientConfig


// DeferredLoadingClientConfig is a ClientConfig interface that is backed by a set of loading rules
// It is used in cases where the loading rules may change after you've instantiated them and you want to be sure that
// the most recent rules are used.  This is useful in cases where you bind flags to loading rule parameters before
// the parse happens and you want your calling code to be ignorant of how the values are being mutated to avoid
// passing extraneous information down a call stack
type DeferredLoadingClientConfig struct {
    loadingRules   *ClientConfigLoadingRules
    overrides      *ConfigOverrides
    fallbackReader io.Reader


Kubernetes笔记(5)—— kubernetes layout


Node(也称之为minion)运行docker container,而master则负责调度管理这些container


  1. API Server—nearly all the components on the master and nodes accomplish their respective tasks by making API calls. These are handled by the API Server running on the master.
  2. Etcd—Etcd is a service whose job is to keep and replicate the current configuration and run state of the cluster. It is implemented as a lightweight distributed key-value store and was developed inside the CoreOS project.
  3. Scheduler and Controller Manager—These processes schedule containers (actually, pods—but more on them later) onto target nodes. They also make sure that the correct numbers of these things are running at all times.


  1. Kubelet—A special background process (daemon that runs on each node whose job is to respond to commands from the master to create, destroy, and monitor the containers on that host.
  2. Proxy—This is a simple network proxy that’s used to separate the IP address of a target container from the name of the service it provides.
  3. cAdvisor (optional)—http://bit.ly/1izYGLi[Container Advisor (cAdvisor)] is a special daemon that collects, aggregates, processes, and exports information about running containers. This information includes information about resource isolation, historical usage, and key network statistics.



Kubernetes笔记(4)—— application VS service

A service is a process that:
1. is designed to do a small number of things (often just one).
2. has no user interface and is invoked solely via some kind of API.
An application, on the other hand, is pretty much the opposite of that. It has a user interface (even if it’s just a command line) and often performs lots of different tasks. It can also expose an API, but that’s just bonus points.

个人理解,service一般专注做一件事,没有用户界面,并且通过APIapplication交互。而application会有用户界面,并且通常可以运行很多任务。举个例子,web browser就是application,而web server即为service

A Kubernetes cluster does not manage a fleet of applications. It manages a cluster of services.A service running in a container managed by Kubernetes is designed to do a very small number of discrete things.

If your services are small and of limited purpose, then they can more easily be scheduled and re-arranged as your load demands. Otherwise, the dependencies become too much to manage and either your scale or your stability suffers.



Kubernetes笔记(3)—— kubectl和cobra

kubectl是控制k8s clustet manager的命令行工具:

$ kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/kubernetes/kubernetes.

  kubectl [flags]
  kubectl [command]

Available Commands:
  get            Display one or many resources
  describe       Show details of a specific resource or group of resources


Commands represent actions, Args are things and Flags are modifiers for those actions.



$ kubectl get node --v=10



Kubernetes笔记(2)—— 编译时的workspace


~/kubernetes/_output/local$ ls
bin  go


:~/kubernetes/_output/local/go$ ls -alt
total 20
drwxrwxr-x 4 nan nan 4096 Dec  9 22:09 ..
drwxrwxr-x 2 nan nan 4096 Dec  9 22:09 bin
drwxrwxr-x 4 nan nan 4096 Dec  9 22:08 pkg
drwxrwxr-x 5 nan nan 4096 Dec  9 22:07 .
drwxrwxr-x 3 nan nan 4096 Dec  9 22:04 src


~/kubernetes/_output/local/go/src$ ls -alt
total 12
drwxrwxr-x 5 nan nan 4096 Dec  9 22:07 ..
drwxrwxr-x 2 nan nan 4096 Dec  9 22:06 k8s.io
drwxrwxr-x 3 nan nan 4096 Dec  9 22:04 .
nan@ubuntu:~/kubernetes/_output/local/go/src$ cd k8s.io/
nan@ubuntu:~/kubernetes/_output/local/go/src/k8s.io$ ls -alt
total 8
drwxrwxr-x 2 nan nan 4096 Dec  9 22:06 .
lrwxrwxrwx 1 nan nan   20 Dec  9 22:06 kubernetes -> /home/nan/kubernetes
drwxrwxr-x 3 nan nan 4096 Dec  9 22:04 ..



import (


Kubernetes笔记(1)—— hyperkube


// Package hyperkube is a framework for kubernetes server components. It
// allows us to combine all of the kubernetes server components into a single
// binary where the user selects which components to run in any individual
// process.
// Currently, only one server component can be run at once. As such there is
// no need to harmonize flags or identify logs across the various servers. In
// the future we will support launching and running many servers — either by
// managing processes or running in-proc.
// This package is inspired by https://github.com/spf13/cobra. However, as
// the eventual goal is to run multiple servers from one call, a new package
// was needed.


$ km --help
This is an all-in-one binary that can run any of the various Kubernetes-Mesos


  km <server> [flags]


    The main API entrypoint and interface to the storage system. The API server
    is also the focal point for all authorization decisions.


type HyperKube struct {
    Name string // The executable name, used for help and soft-link invocation
    Long string // A long description of the binary.  It will be world wrapped before output.

    servers     []Server
    baseFlags   *pflag.FlagSet
    out         io.Writer
    helpFlagVal bool


// Server describes a server that this binary can morph into.
type Server struct {
    SimpleUsage string        // One line description of the server.
    Long        string        // Longer free form description of the server
    Run         serverRunFunc // Run the server.  This is not expected to return.

    flags *pflag.FlagSet // Flags for the command (and all dependents)
    name  string
    hk    *HyperKube


func main() {
    hk := HyperKube{
        Name: "km",
        Long: "This is an all-in-one binary that can run any of the various Kubernetes-Mesos servers.",




// AddServer adds a server to the HyperKube object.
func (hk *HyperKube) AddServer(s *Server) {
    hk.servers = append(hk.servers, *s)
    hk.servers[len(hk.servers)-1].hk = hk

可以看到,在这个方法中,hk.servers[len(hk.servers)-1].hk = hk可以让Server结构体的hk字段指向同一个binary中的hyperkube,这样就把这些功能集成到一起。 接下来调用hyperkubeRunToExit运行相应的功能。