The “invalid argument” error of cudaMemcpyAsync

Check following CUDA code:

#include <iostream>

#define cudaSafeCall(call)  \
        do {\
            cudaError_t err = call;\
            if (cudaSuccess != err) \
            {\
                std::cerr << "CUDA error in " << __FILE__ << "(" << __LINE__ << "): " \
                    << cudaGetErrorString(err) << std::endl;\
                exit(EXIT_FAILURE);\
            }\
        } while(0)

int main(void)
{
    char *a, *d_a;
    cudaStream_t st;
    cudaSafeCall(cudaStreamCreate(&st));
    cudaSafeCall(cudaMallocHost(&a, 10));
    cudaSafeCall(cudaMalloc(&d_a, 4));
    cudaSafeCall(cudaMemcpyAsync(a, d_a, 10, cudaMemcpyHostToDevice, st));
    return 0;
}

The d_a is allocated only 4 bytes, but we want to copy 10 bytes. In this case, cudaMemcpyAsync will complain invalid argument error:

$ nvcc test.cu
$ ./a.out
CUDA error in test.cu(21): invalid argument

Specify compiler when using CUDA

I try to build a project which uses CUDA. The CUDA on my machine is the newest 9.1. The following error is reported:

In file included from /opt/cuda/include/host_config.h:50:0,
                 from /opt/cuda/include/cuda_runtime.h:78,
                 from <command-line>:0:
/opt/cuda/include/crt/host_config.h:121:2: error: #error -- unsupported GNU version! gcc versions later than 6 are not supported!
 #error -- unsupported GNU version! gcc versions later than 6 are not supported!
  ^~~~~

Check /opt/cuda/include/crt/host_config.h:

#if __GNUC__ > 6

#error -- unsupported GNU version! gcc versions later than 6 are not supported!

#endif /* __GNUC__ > 6 */

The solution is to specify the gcc-6 compiler during running cmake command:

# cmake -DCMAKE_C_COMPILER=gcc-6 -DCMAKE_CXX_COMPILER=g++-6 ..

The reference is here.

Use “.cu” as file extension name when playing Thrust

Today, I tried the simple Thrust program:

$ cat a.c
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream>

int main(void) {
        // H has storage for 4 integers
        thrust::host_vector<int> H(4);

        // initialize individual elements
        H[0] = 14;
        H[1] = 20;
        H[2] = 38;
        H[3] = 46;

        // H.size() returns the size of vector H
        std::cout << "H has size " << H.size() << std::endl;

        // print contents of H
        for(int i = 0; i < H.size(); i++)
                std::cout << "H[" << i << "] = " << H[i] << std::endl;

        // resize H
        H.resize(2);
        std::cout << "H now has size " << H.size() << std::endl;

        // Copy host_vector H to device_vector D
        thrust::device_vector<int> D = H;

        // elements of D can be modified
        D[0] = 99;
        D[1] = 88;

        // print contents of D
        for(int i = 0; i < D.size(); i++)
                std::cout << "D[" << i << "] = " << D[i] << std::endl;

        // H and D are automatically deleted when the function returns
        return 0;
}

Built it:

$ nvcc -arch=sm_37 a.c
In file included from a.c:1:0:
/opt/cuda/bin/..//include/thrust/host_vector.h:25:18: fatal error: memory: No such file or directory
compilation terminated.

It seemed very weird! After scanning Thrust’s FAQ, I came across the following tip:

Make sure that files that #include Thrust have a .cu extension. Other extensions (e.g., .cpp) will cause nvcc to treat the file incorrectly and produce an error message.

Renamed the source file name and rebuilt it:

$ mv a.c a.cu
$ nvcc -arch=sm_37 a.cu
$ ./a.out
H has size 4
H[0] = 14
H[1] = 20
H[2] = 38
H[3] = 46
H now has size 2
D[0] = 99
D[1] = 88

Worked like a charm!

Don’t use “-G” compile option for profiling CUDA programs

I use Nsight as an IDE to develop CUDA programs:

capture

Use nvprof to measure the load efficiency and store efficiency of accessing global memory:

$ nvprof --devices 2 --metrics gld_efficiency,gst_efficiency ./cuHE_opt

................... CRT polynomial Terminated ...................

==1443== Profiling application: ./cuHE_opt
==1443== Profiling result:
==1443== Metric result:
Invocations   Metric NameMetric Description Min Max Avg
Device "Tesla K80 (2)"
Kernel: gpu_cuHE_crt(unsigned int*, unsigned int*, int, int, int, int)
  1gld_efficiency Global Memory Load Efficiency  62.50%  62.50%  62.50%
  1gst_efficiencyGlobal Memory Store Efficiency 100.00% 100.00% 100.00%
Kernel: gpu_crt(unsigned int*, unsigned int*, int, int, int, int)
  1gld_efficiency Global Memory Load Efficiency  39.77%  39.77%  39.77%
  1gst_efficiencyGlobal Memory Store Efficiency 100.00% 100.00% 100.00%

But if I use nvcc to compile the program directly:

 nvcc -arch=sm_37 cuHE_opt.cu  -o cuHE_opt

The nvprof displays the different measuring results:

$ nvprof --devices 2 --metrics gld_efficiency,gst_efficiency ./cuHE_opt
......
................... CRT polynomial Terminated ...................

==1801== Profiling application: ./cuHE_opt
==1801== Profiling result:
==1801== Metric result:
Invocations   Metric NameMetric Description Min Max Avg
Device "Tesla K80 (2)"
Kernel: gpu_cuHE_crt(unsigned int*, unsigned int*, int, int, int, int)
  1gld_efficiency Global Memory Load Efficiency 100.00% 100.00% 100.00%
  1gst_efficiencyGlobal Memory Store Efficiency 100.00% 100.00% 100.00%
Kernel: gpu_crt(unsigned int*, unsigned int*, int, int, int, int)
  1gld_efficiency Global Memory Load Efficiency  50.00%  50.00%  50.00%
  1gst_efficiencyGlobal Memory Store Efficiency 100.00% 100.00% 100.00%

After some investigations, the reason is using -G compile option in the first case. As the document of nvcc has mentioned:

--device-debug (-G)
    Generate debug information for device code. Turns off all optimizations.
    Don't use for profiling; use -lineinfo instead.

So don’t use -G compile option for profiling CUDA programs.

Enable C++11 support for NVCC compiler in Nsight

When using Nsight as an IDE to develop CUDA programs, sometimes, the program may require C++11 support, otherwise errors like this will occur:

/usr/lib/gcc/x86_64-pc-linux-gnu/5.4.0/include/c++/bits/c++0x_warning.h:32:2: error: #error This file requires compiler and library support for the ISO C++ 2011 standard. This support must be enabled with the -std=c++11 or -std=gnu++11 compiler options.
 #error This file requires compiler and library support \
  ^
make: *** [src/subdir.mk:20: src/cuHE_opt.o] Error 1

To enable C++11 support, you need to do following configurations:
(1) Right-click the project, and select the last item: Properities.

1

(2) Check Settings->Tool Settings->Code Generation->Enable C++11 support (-std=c++11).

2